skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Valadez-Ingersoll, Maria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The resilience of coral reefs in oligotrophic, (sub)tropical oceans is largely due to the symbiotic relationship between scleractinian corals and Symbiodiniaceae algae, which enables efficient internal nutrient recycling. Investigating the history of this coral symbiosis can provide insights into its role in sustaining the health of both present and future coral reefs. The isotopic composition of organic nitrogen (15N/14N or δ15N) bound within coral skeletons has been utilized to trace the existence of symbiosis in fossil corals, suggesting that coral symbiosis dates back to at least 210 million years ago. The basis of this proxy is that symbiotic corals are expected to exhibit lower δ15N compared to their non-symbiotic (aposymbiotic) counterparts within the same environments, owing to internal nitrogen recycling between the coral host and algal symbiont, and reduced leakage of low-δ15N ammonium into seawater. However, this hypothesis has not been adequately tested in contemporary settings. In a laboratory experiment, we examined the δ15N differences between the symbiotic and aposymbiotic branches within the same genetic backgrounds of the facultatively symbiotic coralOculina arbusculaunder well-fed conditions. Across five different genotypes in two separate experiments, symbiotic branches consistently showed lower δ15N than their aposymbiotic counterparts. These findings corroborate the use of δ15N as a proxy for identifying coral symbiosis in the past, particularly when multiple species of corals coexisted in the same environments. 
    more » « less
  2. Mutualistic symbioses between cnidarians and photosynthetic algae are modulated by complex interactions between host immunity and environmental conditions. Here, we investigate how symbiosis interacts with food limitation to influence gene expression and stress response programming in the sea anemoneExaiptasia pallida(Aiptasia). Transcriptomic responses to starvation were similar between symbiotic and aposymbiotic Aiptasia; however, aposymbiotic anemone responses were stronger. Starved Aiptasia of both symbiotic states exhibited increased protein levels of immune-related transcription factor NF-κB, its associated gene pathways, and putative target genes. However, this starvation-induced increase in NF-κB correlated with increased immunity only in symbiotic anemones. Furthermore, starvation had opposite effects on Aiptasia susceptibility to pathogen and oxidative stress challenges, suggesting distinct energetic priorities under food scarce conditions. Finally, when we compared starvation responses in Aiptasia to those of a facultative coral and non-symbiotic anemone, ‘defence’ responses were similarly regulated in Aiptasia and the facultative coral, but not in the non-symbiotic anemone. This pattern suggests that capacity for symbiosis influences immune responses in cnidarians. In summary, expression of certain immune pathways—including NF-κB—does not necessarily predict susceptibility to pathogens, highlighting the complexities of cnidarian immunity and the influence of symbiosis under varying energetic demands. 
    more » « less